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Bioinformatics is advanced from in-house computing infrastructure to cloud computing for tackling the vast quantity of biological
data.This advance enables large number of collaborative researches to share their works around the world. In view of that, retrieving
biological data over the internet becomes more and more difficult because of the explosive growth and frequent changes. Various
efforts have been made to address the problems of data discovery and delivery in the cloud framework, but most of them suffer
the hindrance by a MapReduce master server to track all available data. In this paper, we propose an alternative approach, called
PRKad, which exploits a Peer-to-Peer (P2P) model to achieve efficient data discovery and delivery. PRKad is a Kademlia-based
implementation with Round-Trip-Time (RTT) as the associated key, and it locates data according to Distributed Hash Table (DHT)
and XOR metric. The simulation results exhibit that our PRKad has the low link latency to retrieve data. As an interdisciplinary
application of P2P computing for bioinformatics, PRKad also provides good scalability for servicing a greater number of users in
dynamic cloud environments.

1. Introduction

Today new technologies in genomics/proteomics generate
biological data with an exponential growth. Current Next
Generation Sequencing (NGS) technologies can produce
gigabase-scales of DNA and RNA sequencing data within a
day at a reasonable cost [1–3]. Cloud computing has been
regarded as a key approach for processing such a planet-size
data, and hence, many bioinformatics applications have been
migrated to the cloud environments [4–7]. Bioinformatics
clouds are heavily dependent on data, as data are fundamen-
tally crucial for receiving biological insights. The analyses
are commonly based on the extensive and repeated use of
comparative parallel process viaData-as-a-Service (DaaS) on
the web [8–10], most notably in the gene expression analysis.

The data are likely to be updated constantly. The sources and
users of the data would be connected by various devices over
the internet.The effectiveness for locating the deluged data in
cloud computing is often overlooked, but it is a key problem.
From the aspect of retrieving the up-to-date data with less
complexity and delay, we settled the existing problems in data
discovery. Along these lines, the high computing ability of
P2P framework is adopted as a dynamic cloud infrastructure
to resolve the challenge caused by massive datasets [11–13].

Bioinformatics usually requires the collection, organiza-
tion, and analysis of large amounts of biological data through
computers and storage units connected by networks. Many
integrative projects attempt to improve the accessibility of
biological data and analysis result to end users. P2P com-
puting makes considerable services efficient in a large-scale
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network, such as file sharing, content distribution, and
application-layer multicasting application. In view of this,
Montgomery et al. proposed a P2P platform for analysis inte-
gration so as to improve the accessibility of algorithms and
potentially provide bioinformaticians with unprecedented
computing resources [14]. Quan et al. described a method
where one canmaintain the precision in experimental process
within a P2P architecture and presented how this can support
experiments [15]. There are two classes, structured and
unstructured, of P2P overlay networks, where the former
maintains a network topology, and the latter does not.
Structured P2P overlay network is often constructed based
on Distributed Hash Table (DHT), in which the location
information of data is placed at peers with identifiers corre-
sponding to the unique key of data. There are many DHT-
based P2P systems, such as CAN [16], Chord [17], Chord2
[18], Pastry [19], Tapestry [20], and Kademlia [21]. Lua et al.
conducted an extensive survey and comparison of both
structured and unstructured P2P overlay network [22].

DHT-based systems have several properties of decen-
tralization, scalability, and fault tolerance. Decentralization
means that the network nodes collectively build the system
without any central mechanism, scalability represents that
the system should work for a great number of nodes with
little degradation in performance, and fault tolerance implies
the reliability under peers continuously joining, leaving, and
failing. For above properties, the nodes of DHT-based P2P
systems should communicate with other nodes. Kademlia
[21] is one of DHT-based P2P decentralized overlay networks
whose identified key is obtained from the SHA-1 hash, and
it constructs an XOR-based metric topology to simplify
the internal operations. The Kad network implements the
Kademlia protocol, while eMule and MLDonkey are two
famous P2P file sharing applications supporting the Kad
network implementation [23].

Kademlia network follows the XOR metric for distance
evaluation, resulting in no delay consideration in the physical
network for searching. In other words, the optimal search
result given by Kademlia could provide poor link latency.
Therefore, we add a mechanism into Kademlia to reflect the
link condition of the physical network. Our goal is to select
the nodes with the better link latency in cloud environment
from all candidates found in the search process of Kademlia.
Moreover, ourmethod keeps Kademlia features preserving so
as to use its sophisticated operations.

This paper is organized as follows. Section 2 introduces
Kademlia architecture and protocol, together with its prob-
lem on poor transmission. Related works are also addressed
in this section. Subsequently, we conduct extensive simula-
tions in Section 3, and finally, Section 4 draws our conclusion.

2. Materials and Methods

2.1. Kademlia. Kademlia is based on the pair of (key, value),
and use XOR-metric to be the distance evaluation between
two nodes. Both the NodeID and data key are binary
sequence of 160-bit length obtained from SHA-1 hash, while
the (key, value) pair comes from the physical location of data.

Table 1: k-bucket.

Distance List with 𝑘 = 10
20 ◼→ null
21 ◼→◼→ null
22 ◼→◼→◼→◼→ null
...

...
2159 ◼→◼ →◼→◼→◼→◼→◼→◼→◼→◼→ null

The distance is computed by the logical operator XOR of two
IDs or between ID and key. Nodes are classified according to
XOR metrics of themselves, and there are total 160 buckets
due to the NodeID length. A bucket stores the nodes whose
XORmetrics are between 2𝑖 and 2𝑖+1, 0 ≤ 𝑖 < 160. Because of
the upper bound of bucket size 𝑘, it is also named as k-bucket
(see Table 1).

The stored nodes in bucket are sorted as the ascending
order according to their update time. At the beginning, a
bucket is enough to store nodes and will be split once the
number of nodes is over 𝑘, where nodes are classified by their
XOR metrics. The default option is to only split the right
bucket on the Kademlia tree. If the size of left bucket has
achieved the upper bound𝑘, Kademlia checkswhether a node
disappears or not by using the RPC call. For no response from
the node, Kademlia removes it followed by adding a newnode
into the tail; otherwise, it drops the new coming node. That
is, 𝑘-bucket mechanism prefers to keep the nodes with longer
online times. Steiner et al. suggested that the longer the online
time of a node is, the greater the probability it will be online
continuously [24]. In addition, more nodes with long staying
time preserved in the Kademlia structure help to make the
topology and performance stable.

2.2. RPCs and Operations. Kademlia has four RPCs of RTT,
STORE, FIND NODE, and FIND VALUE. RTT is to check if
a node is online, while STORE asks a node to store a pair of
(key, value). FIND NODE retrieves at most 𝑘 nodes nearest
the target node with the key. It works by sending a target key
of size 160 bits and asking receivers to reply 𝑘 nodes nearest
the target node having the key with the form of (IP, ID,
Port). Once receiving the response, it repeats the procedure
to visit the new retrieved nodes until no new nodes are
known. Finally, the mechanism of FIND VALUE is similar to
FIND NODE but returns the target value with the specified
key.

Moreover, Kademlia uses the three operations, Lookup,
Publish, and Search. Lookup is based on the FIND NODE
and repeats to send request messages simultaneously to all
new nodes it knows. Once a reply message returns some
feasible nodes, it immediately sends request messages to
these new nodes.The procedure continues until no new node
is available. At most 𝑘 nodes nearest the target node with the
key are returned in the end. As to Publish, it computes the key
as the target and uses Lookup to retrieve 𝑘 nodes nearest the
key. Subsequently, it sends request messages to these 𝑘 nodes
for asking them to store the information of (key, value).
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Furthermore, Search operation starts the search process
from the list of itself and then uses FIND VALUE if no
target is found. Compared with Lookup, Search terminates
its procedure once the value corresponding to the target
key is discovered. Eventually, Search operation updates the
(key, value) information in the closest node to the node with
target key if the closest one contains no or aged information
about the specified key.

2.3. Node Join/Leave. To join theKademlia network, the node
𝑥 knows at least a node 𝑦 that has been in the network and
starts Lookup targeting to ID. During the Lookup process,
x can update the bucket content of itself and other nodes.
Besides, Kademlia does not regard the node leave as an
emergency event. Instead, it removes the offline node only
when a new node asks to enter a full 𝑘-bucket.

2.4. Problem. Kademlia employsXORmetric to construct the
overlay network without taking the transmission of physical
network into account. As a result, the target nodes being
the optimal search result returned by Kademlia could have
poor performance in coming transmissions. In this paper, we
moderate the gap between physical and overlay network of
Kademlia by adding a transmission evaluation into Kademlia
with preserving its features.

2.5. Related Works. Some works have addressed the problem
and present their solutions to consider physical network with
a direct/indirect way in constructing the overlay network.
The direct method is to adjust the ID of each node [25,
26], whereas the indirect way is to add more parameters as
filters when performing operations [27, 28]. Yamato et al.
used a Locator/ID separation approach with the hierarchical
Kademlia for new generation networks, and mobile nodes
could retrieve specific data without explicit mapping [25].
The design transformed the device identity from its location
into two different namespaces, which are NodeID and Rout-
ing Locators (RLOCs). The implementation of hierarchical
Kademlia eliminated the need of name servers. However, if
a super node leaves, its subsidiary nodes would be forced
to disconnect from the network. The reformation of the
hierarchy would require considerable time.

Sioutas et al. randomly chose a node to store an index
table of the level clustered nodes, and these nodes were
assigned an ordered NodeID by a given autonomous ranging
factor [26]. In this way, the data searching process with
peer churn would only require 𝑂(log ⋅ log 𝑛) hops for 𝑛
nodes. The approach enabled range query process on large-
scale, typically distributed infrastructures, such as clouds
of thousands of nodes at shared datacenters. In such dis-
tributed environments, range query is the key for managing
the distributed data and for monitoring the infrastructure’s
resources. Through this method the time of network restruc-
turing reduced, but for two nodes nearest to each other being
in different clusters, they would take longer time to lookup
node. Also, the implementation of autonomous range tree in
decentralized architecture is still complex.

01011 . . . 101 . . . 0

Ping value NodeID

PRID

Figure 1: PRID representation.

Lai and Yu used the vector of different attributes as key
parameters to reserve resources [27]. The resources with the
same vector are aggregated to form the attribute groups.
These attribute groups connect each other to form a hybrid
overlay for decentralized data sharing.The hybrid overlay is a
semistructuredmultistar overlay, which combines structured
and unstructured P2P networks to support complex data
queries. The multistar overlay connects to the attribute
groups to offer range queries and reduced the number of
routing hops by migrating requests. Since the focus is the
load balancing, the defect of this method suffered excessive
delay when transferring redundant connections to other low
loading neighbors, especially when the attribute group has
never received the same data query before.

In [28], a geographical overlay system was built for
geodistance based resource lookup and data delivery. The
system managed the overlay network and end system node
multicast by utility-driven routing, which involves consid-
eration of the best combine geodistance and link latency
(i.e., round trip time). Each node maintained information
about 𝑂(log 𝑛) other nodes in its list of peer node, and a
node must be described with a tuple of five attributes, which
are two unique identifiers of geographical location, a region
marker, and IP address with port as well as the amount of
resource of that node. Regardless of the claim for producing
the near-optimal routing decision, the overhead were likely
to be excessive, and the scalability of this approach might be
an issue.

In this paper, we use the RTT value as the Lookup filter
and develop PRKad so as to return targeting nodes with
smaller RTT values. A smaller RTT value implies a shorter
transmission time, which can reduce the cost of later network
transmissions. Besides, PRKad has no structure of the super
node and also can avoid selecting farther nodes.

2.6. PRKad. Similar to Kademlia, NodeID and key in PRKad
are binary sequences with length 160 bits, and XOR operation
is also used for the distance evaluation. Apart from XOR
metric, PRKad utilizes the RTT value to somewhat show
how far the physical distance. The RTT value is represented
by a binary number of fixed length and put in the prefix
of NodeID. We call it PRID shown in Figure 1. PRID infor-
mation is exchanged during the node communication, with
which nodes can know both the physical and XOR distances
to each other.

Based on PRID, PRKad constructs a binary tree, named
PR tree, with a Kademlia tree in its leaf node (Figure 2).When
a node enters the PR tree, its RTT value is corresponding to a
specific leaf node on PR tree, and next, NodeID is referred to
a particular bucket.
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Figure 2: PR tree.
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Figure 3: Example of eight nodes with their RTT values.

Suppose that there are eight nodes. Figure 3 illustrates the
RTT values corresponding to the red node whose RTT value
is 0.The upper bound of the size of leaf node on PR tree is set
to 3, and then, we show the process for other 7 nodes entering
the PR tree.

At the beginning, PR tree is divided into two PR subtrees
by default, illustrated by Figure 4(a), so that we can avoid
putting all nodes in a leaf node of PR tree. After four nodes
with RTT values of 10, 30, 50, and 200 entering the PR tree,
Figure 4(b) shows the result with the tree height 1. Since
nodes are classified by the first bit of their RTT values, the
right PR subtree contains nodes 10, 30, and 50, and the left
subtree has the node 200. Next, the two leaf nodes of PR
tree have their respective Kademlia trees according to the
NodeID.

When adding the nodewithRTTvalue 80,we know that it
should be put on the right PR subtree according to the same
rule; however, the right leaf node requires to be split due to
the upper limit being 3. Figure 4(c) illustrates the PR treewith
five nodes, where the tree height is 2 and nodes are classified
with their first 2 bits of RTT values. In other words, the nodes
10, 30, and 50 are on the same Kademlia tree, whereas the
node 80 is alone. Finally, Figure 4(d) presents the result once
the nodes 90 and 100 are entering the PR tree.

On the other hand, PRKad utilizes five RPCs of BOOT,
RTT, STORE, FIND NODE, and FIND VALUE, where the
usages of the last four RPCs are similar to Kademlia. A node
𝑥 uses Bootstrap operation based on BOOT to enter the
network, which works as the following procedures.

(1) 𝑥 picks a node 𝑦 existed in the network and acquires
the RTT value with 𝑦 to form the PRID. Next is to
send out bootstrap request message with information
(IP, ID, and Port).
(2) After receiving the bootstrap request message, 𝑦

extracts PRID from the message and adds the new
coming node 𝑥 into 𝑦’s PR tree. Subsequently, 𝑦 sends
response message back with its PRID inside.

(3) For receiving the bootstrap response message from 𝑦,
𝑥 adds 𝑦 into its PR tree by using 𝑦’s PRID.
(4) 𝑥 performs Lookup operation to know other nodes in

the network.

Here, we set two positive integers 𝑑 and 𝑝
𝑡
for indicating

the thresholds of XOR metric and RTT value, respectively.
Lookup operation in PRKad is based on the FIND NODE
with the following procedures.

(1) Select 𝑘 nodes at random from the right PR subtree,
where 𝑘 is the general bucket size. The 𝑘 nodes
comprise a groupX, and Lookup operation starts with
these nodes (the reason why we exploit 𝑘 nodes here
is to increase the probability of selecting nodes with
smaller XOR metric at the initial stage. Since nodes
have different RTT values, the nodes in the same
bucket of Kademlia could be put into different loca-
tions of PR tree. Randomly selecting 𝑘 nodes could
help to pick appropriate nodes at the beginning).

(2) Select 𝛼 nodes from X closest to the target and send
Lookup request messages to them.

(3) Remove nodes without responses from X and send
Lookup request messages to other nodes in X closest
to the target.

(4) After receiving Look response messages, that is, node
list, sort the nodes with their XOR metrics and
compute their RTT values.

(5) The nodes whose XOR metric and RTT value are less
than 𝑑 and 𝑝

𝑡
, respectively, are stored into the list L,

implying the success range of Lookup; otherwise, they
are added into X.

(6) Repeat step (2) until no new node is available or the
size of L reaches the upper limit k.

The Publish operation of PRKad is identical to that of
Kademlia. If we keep the Lookup method for PR tree, then
the obtaining nodes are near in cloud environment, leading to
the difficulty to distribute file information over the network.
As a result, PRKad employs the same publish mechanism in
Kademlia to spread information around.

The goal of search operation in PRKad is to find out 𝑘
nodes closest to the target key. It starts to search the list L,
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Figure 4: A construction example of PR tree.

and if no target is found, it uses the Lookup operation.
However, there are a few differences comparedwith the above
Lookup procedures, shown in the following.

(1) Send the search request once a node is added into the
list L.

(2) Stop if receiving the value corresponding to the target
key.

(3) For no responses from nodes, we continuously look
up to the nodes beyond list L, inspect the 𝑑 and 𝑝

𝑡
of

new coming nodes, and send the search request to the
valid node.

(4) A node receiving the search request searches the
target key in the list L and replies target information if
found; otherwise, it returns the node list of particular
bucket according to PRID.

Since the Publish operation in PRKad is identical to that
in Kademlia, all nodes having data could be put on the left
PR subtree, resulting in the poor performance of Lookup
operation when starting search from the right PR subtree.
Therefore, once there is nothing found within the range of
metric d, we can pick nodes from the left PR tree immediately
to reduce the searching time. Besides, the positive integer 𝑝

𝑡

helps to filter nodes with distance less than 𝑑 but having a
large RTT value.

3. Results and Discussion

3.1. RTT/Latency. In this paper, the RTT value is an impor-
tant parameter. In the following experiments, we utilize

the formula of PeerfactSim [24] to simulate the RTT value.
The formula comes from [29] and is used to compute
the latency of two nodes lay on a 2-dimensional plane in
PeerfactSim. Given two nodes 𝑠 and 𝑟, the formula is as
follows:

Latency (𝑠, 𝑟) = 𝑓 ⋅ (df (𝑟) + dist (𝑠, 𝑟)
V
) , (1)

where𝑓 a randomnumber out of (0.1, 0.2, . . . , 1.0) represents
the retransmission probability due to several reasons, for
example, congestion, packet loss, and so forth. df(𝑟) is the
processing time at node r, and its value is between 0 and
31ms depending on different systems.The shortest Euclidean
distance between 𝑠 and 𝑟 on the plane is represented by
dist(𝑠, 𝑟), and the absolute term V is the signal propagation
speed of default value 100,000 km/s in PeerfactSim. There-
fore, the quotient of dist(𝑠, 𝑟)/V denotes the propagation delay
of a signal.

We follow the same configurationswith [30] so as tomake
the formula more reliable. The simulated plane is also fixed
as 40,000 km × 40,000 km. Other distinctive parameters and
values for experiments of Kademlia and PRKad are listed as
follows.

(i) 𝑘 = 20 is the upper bound of bucket size.

(ii) 𝛼 = 3 is the number of selected nodes at a time in step
(2) of Lookup operation.

(iii) RTT NODE LIMIT = 100 is the maximum number
of stored nodes for a node using the RTT call.
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Figure 5: Simulation flow.

3.2. Simulation Flow. Since the Search operation is the most
frequently used and contains the Lookup operation in its
procedure, our simulations focus on the Search performance.
Figure 5 shows the simulation flow.

Initializing Network. We randomly distributed nodes on the
simulated plane and then perform the Boopstrap procedure.

Search. Each node executes Search operation with ID as the
target key. A simulation is complete when all nodes finish
their search processes.

Success?. We count the following four experimental statistics
after the successful searches of nodes. Besides, the node with
the smallest XOR metric is the closest node to the host, and
for convenience, we call it XOR closest node (XCN for short).

(i) Successful Search: A search obtaining XCN can be
regarded as a successful search, while the number of
successful search is increased by 1 if a node discovers
its closest node. In the simulations, Kademlia’s XCN
has the smallest XOR metric to the target key; by
contrast, PRKad takes nodes of top 𝛼 (=3) smallest
XOR metrics as the XCNs.

(ii) Hop Count: The variable calculates the average of
the number of hops for each node with a successful
search.The hop count of a node is the number of hops
reaching the target key and increased by 1 in a pair of
request and response:

Hop Count

= (∑ hop counts of a node

with a successful search)

× (Amount of nodes with successful searches)−1.
(2)

(iii) RTT Value: We compute the average of the summa-
tion of RTT values to XCNs for each node:

Ping Value =
∑ ping values of each XCN

Amount of nodes with successful searches
.

(3)

(iv) Message Count: We also count the amount of mes-
sages used for Lookup requests. Then, the variable
calculates the average number ofmessages used in the
successful search for each node:

Message Count

= (∑ amount of messages for each node

with a successful search)

× (Amount of nodes with successful searches)−1.
(4)

Figure 6 illustrates the relations among the above vari-
ables we consider. Two closer nodes in Figure 6 indicate the
smaller XOR metric they have. Nodes A, B, and C are top 3
XCNs to the target key, and they own identical information.
Kademlia uses the node C as its XCN, whereas all three
nodes can be the XCNs in PRKad. We set the same range
to avoid unfair comparisons in the following experiments.
When receiving the XCN, the number of successful search is
increased by 1. In Figure 6, the host finds the node C through
an intermediate node, and thus, its hop count is equal to 1.
Also, the RTT value and number of messages used in the
Lookup request are recorded.

3.3. Simulation Result. We conduct extensive simulations for
comparing PRKad and conventional Kademlia performances
under a typical scenario of constantly updated data. We
assume each new data update as a new node; thus, we
have an increasing number of nodes in the simulations.
Each experimental result shown in the following figures is
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the average of 10 simulations with the same configuration.
Particular settings have been introduced in Section 3.1.

At first, we show the percentage of successful searches
to find out the XCN under different number of nodes. In
Figure 7, PRKad’s behavior is clearly superior to Kademlia,
and the gap is getting large for more number of simulated
nodes. The main reason is that if PRKad discovers nothing
in the right PR subtree, it continues searching in the left
PR subtree. Moreover, PRKad takes 𝛼 (=3) nodes as its
XCNs instead of 1 in Kademlia. Two mechanisms raise the
percentage of successful searches of PRKad to almost 100 in
each simulation.

Figure 8 exhibits the average number of hop counts in
successful searches for different number of nodes. Since we
accumulate the number of hop counts for a Lookup, where
the right and left PR subtrees may be individually searched
with one time, PRKad, as expected, hasmore hop counts than
Kademlia. Furthermore, because small number of nodes on
the simulated plane has larger distances between two nodes,
the possibility that an XCN appears in the right PR subtree
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Figure 8: Average of hop counts for successful searches.
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Figure 9: Average of RTT values for nodes with successful searches.

is high. In the situation, PRKad requires more hop counts
to search XCNs. As a result, there is a parabola-like opening
down for the number of nodes between 200 and 500 in
Figure 8.

Although more hop counts PRKad has in its searches,
it could retrieve XCNs with smaller RTT values. On the
contrary, Kademlia has less hop counts but could obtain an
XCN having the larger RTT values. Figure 9 confirms the
statement and presents 50% saving for the averages of RTT
values in PRkad.

Moreover, the average of message counts for nodes with
successful searches is an important performance indicator. In
Figure 10, the average of message counts in Kademlia is obvi-
ously less than that in PRKad, but the gap is becoming small
for more simulated nodes. From the above introduction to
Kademlia, a node receiving Lookup request replies all nodes
in the bucket, and next, the host sends Lookup requests to
these nodes.Therefore, the more nodes in a bucket, the larger
amount of Lookup requests sent out by the host. Figure 10
presents that the amount of messages used in Kademlia is
increasing gradually because more nodes cause more full
buckets. In addition, PRKad, unlike Kademlia, does not send
requests simultaneously to the nodes given by a Lookup
response. Figure 10 also confirms that two parameters d
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and𝑝
𝑡
adopted by PRKad can significantly reduce the amount

of messages generated by successful searches.
Figure 11 also shows the amount of messages used in all

searches. As expected, the Kademlia curve raises step by step;
however, the PRKad curve stops increasing and keeps stable
after 800 simulated nodes. The simulation result indicates
that the approach of d and 𝑝

𝑡
works well for controlling the

amount of used messages.
To show that PRKad is indeed better than Kademlia in

giving the XCN with a small RTT value, we retrieve the
node with the smallest RTT value among all XCN candidates
offered by Kademlia. From Figure 12, the improved Kademlia
(iKademlia) performs better than original one in terms of
giving nodes with small RTT values but is still poorer than
PRKad.This implies that during the search process, Kademlia
may lose some XCN candidates, which have smaller RTT
values.

4. Conclusions

Bioinformatics usually requires the collection, organization,
and analysis of large amounts of biological data through
networks. Therefore, opportunities for applying consistency-
checking and data-sharing mechanisms have been found
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Figure 12: Average of RTT values for nodeswith successful searches.

in many areas of bioinformatics. P2P computing makes con-
siderable services efficient in a large-scale network, such as
file sharing, content distribution, and application-layer mul-
ticasting application. This paper provides a detailed descrip-
tion for the mechanisms of PRkad system and presented a
prototype implementation based on the P2P framework and
an extensive performance evaluation of the system. By using
RTT value as the associate key for searching nodes, PRKad
has the small link latency in dynamic cloud scenarios com-
posed of vast simulated nodes.The experimental results show
that PRKad outperforms Kademlia, a traditional DHT-based
P2P system, in less latency of retrieving data. Though more
hop counts PRKad has in its searches, it can retrieve data
with smaller RTT values, which assists in transferring large-
scale datasets. Moreover, the scalability of PRKad is helpful
to serving a greater number of nodes without significantly
degrading the performance. PRKad has no job failure even in
the presence of very high data updating rates, thus enabling
the collaborative applications of data discovery and delivery
in bioinformatics.
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